

[^0](This page is intentionally left blank)

Stafford Growth Options Study

Further Initial Option Technical Note

April 2008

Notice

This report was produced by Atkins for Staffordshire County Council for the specific purpose of Stafford Growth Options Study.

This report may not be used by any person other than Staffordshire County Council without their express permission. In any event, Atkins accepts no liability for any costs, liabilities or losses arising as a result of the use of or reliance upon the contents of this report by any person other than Staffordshire County Council.

Document History

JOB NUMBER: 5023650		DOCUMENT REF: Further IOA AT V1.4.doc				
3	Additional Information	RF	TD			
2	Additional Information Draft	RF	TD			
1	Initial Draft	RF	SB	TD	AT	$28 / 04 / 09$
Revision	Purpose Description	Originated	Checked	Reviewed	Authorised	Date

(This page is intentionally left blank)

Contents

Section Page

1. Introduction 7
Background 7
The Further Initial Options Assessment Technical Note 7
Report Structure 7
2. Land Use and Road Scheme Options 9
New Scenarios 9
3. Initial Option Assessment 16
Impact on All Users 18
Impact on Strategic Routes 19
Impacts on New Development Trips 19
Network Impacts 20
Environment 20
Access to Public Transport 21
Access to Non Motorised Modes 22
Feedback on the New Road Schemes 23
4. Additional Tests 25
Delay and Flow Analysis 25
Journey Times 28
Previous KPI Findings 31
5. Summary 34
List of Tables
Table 2.1-10 Options with Road Schemes 9
Table 3.1 - Summary of KPI Option Scoring 17
Table 3.2 - Land Use/Road Scheme Impacts 17
Table 3.3 - Development Units without PT Access 21
Table 3.4 - Network Impacts on Road Schemes 23
Table 4.1 - Options for Additional Testing 25
Table 4.2 - High Delay junction Spread by Option 26
Table 4.3 - Total Flow on Radial Routes 28
Table 4.4 - Benefit Ranking for Delay and Flows Analysis 28
Table 4.5 - Ranking on Journey Time Analysis 31
Table 4.6 - Rebased Initial KPIs Ranked on Benefits 32
List of Figures
Figure 2.1 - Do Minimum 10
Figure 2.2 - Option 1a 11
Figure 2.3 - Option 2 11
Figure 2.4 - Option 3 11
Figure 2.5 - Option 4 11
Figure 2.6 - Option 1 Western 12
Figure 2.7 - Option 2 Test 1 12
Figure 2.8 - Option 2 Test 2 12
Figure 2.9 - Option 2 Test 3 12
Figure 2.10 - Option 3 Test 1 13
Figure 2.11 - Option 3 Test 2 13
Figure 2.12 - Option 3 Test 3 13
Figure 2.13 - Option 4 Test 1 14
Figure 2.14 - Option 4 Test 2 14
Figure 2.15 - Option 4 Test 3 14
Figure 3.1 - Summary of KPI Scoring 18
Figure 3.2 - Access to Public Transport Networks 21
Figure 4.1 - Journey Time Routes for Analysis 28
Appendices
Appendix A 37
Appendix B 45
Appendix C 61
Appendix D 65
Appendix E 77
[^1]
1. Introduction

1.1 Atkins Transport Planning has been appointed by Staffordshire County Council (SCC), to carryout a technical study to understand the implications of proposed growth around Stafford on the transportation network as part of the 2003 Call on Commission.

Background

1.2 The key element of the commission was to develop a new transport model to identify the most sustainable locations, in transport terms, for new housing and employment development in Stafford.
1.3 The Stafford Model built was required to contain provisions to incorporate the emerging development sites identified from currently ongoing studies.
1.4 The Initial Options Assessment constitutes Task 13 and 14 of Phase IV of the overall study (see Atkins report "Understanding the Transport Implications of New Developments in Stafford: Inception Report (July 2007)" where:

- Phase IV is the Detailed Transport Option Assessment;
- Task 13 is the Initial Options Report; and
- Task 14 is the Key Growth Issues

The Further Initial Options Assessment Technical Note

1.5 The purpose of this technical note is to follow on from the previously reported "Initial Options Assessment Report (December 2008)" (IOA Report) and the subsequent "Addendum to the Initial Options Assessment Report (February 2009)" (The Addendum).
1.6 The IOA Report considered three growth scenarios (namely Options 1a, 1b and 1c) of 7000 additional housing in the Stafford area. The three scenarios differed in their positioning of the housing sites. These were assessed against Key Performance Indicators (KPIs) to provide a means of deciding which scheme should be taken forward. Further to presentation of these findings, the Steering Group decided that three new, higher growth, options should be tested.
1.7 The Addendum evaluated these higher growth options (namely Options 2, 3 and 4) against the same KPIs as used previously. These were also presented to the Steering Group who advised that these options should be taken forward and considered in conjunction with three road schemes against the same KPIs.
1.8 The study of these growth options along with the suggested road schemes is the subject of this technical note.

Report Structure

1.9 This Technical note follows on from the IOA Report and Addendum following the same methodology as described in these report to evaluate the new options.
1.10 Therefore, the sections contained in this technical report are as follows:

- Land Use and Road Scheme Options;
- Initial Option Assessment; and,
- Summary.
(This page is intentionally left blank)

2. Land Use and Road Scheme Options

2.1 The land use options considered in this technical note are identical to those considered in the Initial Options Assessment Report and associated Addendum.
2.2 This technical note considers 10 new scenarios that are based around testing the previous land use options with a combination of remedial road schemes. The road schemes under consideration are:

- Western Distributor Road;
- Eastern Bypass; and
- Southern Bypass.
2.3 The specific Land Use options being built upon are:
- Option 1a - the preferred option identified in the Initial Options Assessment Report; and
- Options 2, 3 and 4 - from the Addendum to the Initial Options Assessment Report.

New Scenarios

2.4 In this technical note the 10 new scenarios will be compared to 5 of the previously considered scenarios from the first two IOA reports to quantify the effects of providing different road schemes.
2.5 Table 2.1 defines what each of the 10 new scenarios consists of with respect to the individual land use options and road schemes. The table also acts as a reminder of the 5 previously evaluated scenarios that are to be considered.

Table 2.1-10 Options with Road Schemes

Name	Land Use Option	Housing Distribution	Additional Housing	Associated Road Scheme		
				Western	Eastern	Southern
Do Minimum	-	-	2,500			
Option 1a		North, West	7,000			
Option 2		North, West, South	10,000			
Option 3		North, West, East	10,000			
Option 4		West, South, East	10,000			
Option 1 Western	Option 1a	North - West	7,000	Y	-	-
Option 2 Test 1	Option 2	North, West, South	10,000	Y	Y	-
Option 2 Test 2				Y	-	Y
Option 2 Test 3				Y	Y	Y
Option 3 Test 1	Option 3	North, West, East	10,000	Y	Y	-
Option 3 Test 2				Y	-	Y
Option 3 Test 3				Y	Y	Y
Option 4 Test 1	Option 4	West, South, East	10,000	Y	Y	-
Option 4 Test 2				Y	-	Y
Option 4 Test 3				Y	Y	Y

Figures 2.1 through to 2.15 show the locations of the land use and highway schemes that make up each Option tested in this report

Figure 2.1 - Do Minimum

 Figure 2.5 - Option 4

SNIXIV

SNIXILV

SNIXIIV

SNIXIIV

3. Initial Option Assessment

3.1 This section outlines the assessment of the Key Performance Indicators (KPIs) and the comparison of these for each option.
3.2 The performance of each of the options has been compared against 20 KPI criteria. These are the same KPIs as defined in section 4 of the IOA Report. In this report, the options are ranked from 1 to 15 , with 15 being the worst, according to how they compare against one another.
3.3 In contrast to previous reports, and to aid consistent scoring, any differences between options will result in separate scores for those options. Only when two options are identical on a measure will they be scored equally. Equal scoring will be made at the mid-point between their rank and the next highest rank (i.e. if two options are equal first they shall be scored 1.5 with the next best scoring 3).
3.4 Appendix A - Detailed Evaluation of Options contains the detailed qualitative and quantitative KPI output used for the rankings. It also shows how the options were ranked for each of the 20 KPIs. The methodology used to rank the options against each KPI is also described.
3.5 A summary of each of the KPI scoring is provided in Table 3.1 overleaf. Furthermore, Table 3.2 provides a quick analysis of how each of the land use configurations and each of the road schemes responded to being applied together.
3.6 When analysing the results, it is critical to recall that the options are unequal in terms of cost of implementation and quantity of additional housing. This analysis concentrates on the benefits side of the cost-benefit ratio; it does not include any assessment of comparative scheme costs and the deliverability of each road scheme. An in-depth study of these issues will inform the decisionmaking process about the full implications of each option and may affect the final selection of a preferred road scheme option.
3.7 Therefore, the process of choosing a preferred option is a balance. For example, those Options that perform well with no road schemes are favourable as road schemes will be incredibly expensive to deliver. Equally, options that incorporate more housing than others should be preferred providing their associated disbenefits are not too great.

		ROAD SCHEME EVALUATION				mpacts	
		No Test	Test 1	Test 2	Test 3	Average	Rank
	Option 2	207	176	105	118	151	2
	Option 3	229	163	110	96	150	1
	Option 4	218	188	109	129	161	3
	Average	218	175	108	114		
	Rank	4	3	1	2		

3.8 As with any ranking system there are a range of alternative methods that could be adopted. The risk in the scale of this KPI ranking is that with 15 options the sum of KPI scores could lead to debatable results. This is due to the fact that if an option scores 15 on one KPI this could have a large impact on its final ranking.

Therefore, analysis will try to interpret the individual scores in addition to the overall ranking to ensure a fair conclusion. To aid this, Figure 3.1 demonstrates the distribution of each option's KPI scoring.

Figure 3.1 - Summary of KPI Scoring

3.11 The assessment of the impacts on all users has noted the following:

- Option 2 Test 2, Option 3 Test 1 and Option 4 Test 2 have the highest demand indicating that they suppress the least trips of the 10,000 housing options. Interestingly, the three Test 3 options, that include all of the new road schemes, rank $4^{\text {th }}, 6^{\text {th }}$ and $8^{\text {th }}$ for demand. Given their extra road capacity it might have been expected for them to perform best. The 'Test 2' options are the most consistently high scoring indicating that their combination of Western and Eastern road schemes is a strong solution;
- Low average trip lengths can be interpreted in two ways. When only the location of development changes it indicates that the developments are suitably located to reduce trip lengths. However, when road schemes are included a reduction in trip lengths suggests that the road is providing a more economical route for a number of drivers. There are 5 options that
tie equal first for this measure. Unsurprisingly they are all options with road measures but they include all 3 of the Test 2 options, 2 of the Test 3 options and none of the Test 1 options. The common theme between Tests 2 and 3 are the western and eastern road schemes. Therefore, the results suggest that these are the ones that best provide a reduction in journey distances. Conversely, this also suggests that the southern road scheme does not score well for journey lengths;
- Test 1 road scheme options all perform badly on the vehicle hours, kilometres and speeds KPIs. In fact, there is a pattern that for each land use option Test 1 falls centrally between the no road scheme option and the Test 2/3 option. This suggests that the southern bypass cannot provide benefits when used without the eastern bypass. Logically, when the southern and eastern combine they provide an alternate route for north-south movements. However, when the southern is utilised on its own it only provides benefits for very specific routes;
- The Test 3 options score very highly for vehicle hours and speeds but only moderately well for kilometres. This suggest that the use of all 3 new roads is good for keeping traffic moving due to the extra highway capacity it offers. The Test 2 options also perform well on Vehicle hours and speeds but are particularly efficient in vehicle kilometres; and
- Of the development options, Options 2 and 3 - across all road scheme tests - score similarly. However, Option 4 consistently performs worse over all like-for-like road scheme tests.

Impact on Strategic Routes

The assessment of the changes in trips on the M6 around Stafford has shown the following:

- All options including Test 1 road schemes score very poorly, often worse than the high growth options without road schemes (Options 2-4). This again highlights how the combination of southern and western road schemes is disjointed. Trips will not be removed from the M6 in Test 1 as there are no better options provided;
- In stark contrast to this, the options that include Test 3 score very strongly due to the seamless nature of their road schemes as the southern bypass leads directly into the eastern. The combination of southern and eastern road schemes provides a sensible alternate route for North-South movements and so reduces M6 flows. Furthermore, this is particularly evident in the flows between junction 13 and 14 for Option 2 Test 3 as this option has much of its development growth located to the north and south;
- The Test 2 options provide a good compromise here as they consistently score better than Test 1 but slightly worse than Test 3 within each land use configuration. This indicates that the eastern bypass alone contributes much of the benefit of the eastern and southern combined; and
- The options without road schemes all perform poorly with Option 4 performing best of the 10,000 housing options without road schemes.

Impacts on New Development Trips

3.13 The assessment of impacts on new development trips has shown that:

- Option 4 Tests 1-3 all score weakly in comparison to their Option 2 and 3 counterparts. Equally, all Test 1 options score poorly in comparison to the others with the same land use. Unsurprisingly, this pattern causes Option 4 Test 1 to be the weakest scoring of all the options that include road schemes. In fact, its performance is similar to the high growth options without road schemes (Options 2-4). This is likely to be due to the development configuration in Option 4 which without road schemes also performs very poorly;
- Tests 2 and 3 are difficult to separate on these measures. Test 2 is better than Test 3 when the Option 2 land use configuration is used but this pattern is reversed under Option 3 land use. This suggests that both tests are good options but that the land use locations determine whether the road scheme's capabilities are maximised; and
- Option 1 Western, the 7,000 house growth option with western distributor road scheme performs well on the measures here. However, the 3,000 less housing provided by this option appears to be responsible for the high scoring.

Network Impacts

3.14 An assessment has been undertaken of the overall network impacts in the key study area. These have considered the following:

- Average junction stress - where the volume to capacity (V/C) ratio is $>85 \%$; and
- Average link stress on the approach to each junction - where the volume to capacity (V/C) ratio is $>85 \%$
3.15 A V/C ratio has been used as the criteria for this indicator as it is recognised that where V/C increases above 85% then the link or junction is assumed to be at capacity and hence any additional flow may cause increased delays and queuing (i.e. over capacity).
3.16 Diagrams showing links $>85 \%$ within the key simulation network for each option and time period are provided in Appendix B. In addition, average vehicle queue length plots are also presented to identify potential locations of excessive queuing and blocking back in the highway network.
3.17 In contrast to the previous IOA Report and Addendum, V/C KPI is now ranked based on the impact on the existing network only. This is to prevent new road schemes negating the positive impacts of their installation. A separate section covers the deficiencies of the new road schemes.
3.18 This indicator has highlighted the following points:
- Option 4 land use configuration responds best to the addition of road schemes. The inclusion of these road schemes has the effect of reducing the congestion on some of the roads and junctions. This is particularly evident in Option 4 Test 2 where almost 18% of over capacity links are brought back under capacity by the inclusion of road schemes (determined by comparing Option 4 Test 2 to Option 4 statistics);
- Broadly speaking, Options 2 and 3 with road schemes perform similarly, as do Tests 1 and 3 regardless of land use configuration;
- Interestingly, in 7 of the 10 options that include road schemes, the number of links over capacity is bought down to the same level or below that of the Do Minimum. In these cases it mitigates the impact of 7,500 more houses. The three road scheme options that fail to do this are Option 1 Western, Option 2 Test 1 and Option 3 Test 2;
- The number of junctions over capacity is much less likely to respond to highway improvements than the links over capacity. This is due to the fact that each link is an individual whereas a junction V/C is based on the activity of all arms. Therefore, the benefits are more muted for the junction V/C scoring. However, they also show that the introduction of road schemes has a beneficial impact on over capacity issues; and
- As expected, the options without road schemes are the lowest scoring in terms of number of links over capacity.

Environment

3.19 A review of the environmental indicators extracted from the SATURN model runs has been undertaken. It is recognised that SATURN provides only a simplified emissions model and hence
the validity of these results should be treated in this light. The results do, however, provide a like-for-like comparison of the options and hence the results have highlighted:

- Each of the Test 2 options performs well on these measures with Option 3 Test 2 scoring strongest of all. This suggests that the combination of western and eastern road schemes provides a good balance between extra capacity and environmentally adverse impacts; and
- The Test 1 options are strong poor performers across all land use configurations and for both NOX and CO2. Test 1 options actually score worse in some cases than the high growth options without road schemes (Options 2-4).

Access to Public Transport

3.20 A diagram of the developments from all Options with the bus routes is shown in Figure 3.2.
3.21 The scoring for this indicator is based on the development locations and therefore the land use configuration tells us what the scoring should be. Therefore, all Option 2 land uses regardless of road schemes score identically. The same follows for Option 3 and 4 land uses.

The results for this indicator are incredibly close with 14 of the options split by just 1.1%. Therefore, in striving for a fair test the Bus Public Transport KPI will be scored from 1 to 4 . This enables the differences to be highlighted while maintaining a sense of their close proximity.

Figure 3.2 - Access to Public Transport Networks

3.23 While not forming part of the KPI assessment, Table 3.3 demonstrates the number of development units without access to public transport for each land use option. This helps to quantify the impact of the lack in bus accessibility.

Table 3.3 - Development Units without PT Access

Land Use Option	Option Housing Development Units without PT Access
Do Minimum	0

Option 1a	3400
Option 2	6000
Option 3	4550
Option 4	5050

3.24 The table demonstrates that Option 2 leaves the most development units without access to public transport while, of the growth options, Option 1a has the least.
3.27 This indicator considers what proportion of land use can access the town centre within 15 minutes through cycling. This assumes a cycle speed of 16 kph and that cycling distance is 1.3 times the 'crow-fly' distances. Accession, upon the DfT's guidance, uses the factor 1.2 to move from 'crowfly' distance to actual travelling distance between two points. Based on our experience the factor 1.3 is chosen as an adjusted version of the DfT's recommended walking distance factor. The adjustment is made based on the assumption that cyclists are less likely to be able to take as many shortcuts as people travelling on foot and so will travel further on average.
3.28 The results of this KPI are also dependent solely on the land use scenario and not on the road schemes. Therefore, as with the previous KPI, all options with the same land use configuration score equally and to the results are as in the previous IOA report and Addendum.
3.29 To summarise, this indicator has highlighted the following;

- The Do Minimum provides the best access to the city centre from developments with 89% of developments within a 15 minute cycle of the centre;
- Of the high growth options, Option 1a and Option 1 Western perform best providing access to the centre for 78% of developments. Options 3 and 4 (including or excluding road tests) score marginally behind this with 77% of developments having access to the town centre by cycling; and
- Option 2 land use configuration scores worst on this measure. This highlights that the developments in Option 2 are further from the town centre than in the other land use options.

The second cycle indicator is access to the national cycle network. Due to the spatial nature of the cycle routes, all options will provide access to the cycle network for a high number of sites. In fact, due to the comprehensive cycle access shown in the Staffordshire County Council urban map all options have been assessed as equal for access by cycle.

Feedback on the New Road Schemes

3.31 This section aims to provide feedback on the suitability of the designs of the new road schemes based on the initial tests.
3.32 The Network Impacts KPI was based purely on the existing road network but the impacts on the new roads were recorded. Table 3.4 summarises the overall impact of each road scheme test.

Table 3.4 - Network Impacts on Road Schemes

	Road Schemes	Junctions (V/C>=85\%, AM+PM)	Links (V/C>=85\%, AM+PM)
Test 1	West/South	3	39
Test 2	West/East	9	50
Test 3	West/South/East	10	65

3.33 Appendix C shows how the actual flows on the Eastern and Southern bypasses differ according to their use within a land use configuration. It also shows how they respond to the inclusion/exclusion of one another.

Eastern Bypass

3.34 It was found that in general, the demand to use the eastern bypass is in excess of $1800 \mathrm{PCUs} / \mathrm{Hr}$ on the section between Weeping Cross Residential and Beaconside. This means that the single lane carriageway currently proposed is often over capacity and thus contributes to the V/C counts seen in Table 3.4.
3.35 There is a big fall in use of the southern section of the Eastern Bypass between Weeping Cross and A513 Milford Road. This is due to heavy use of Baswich Lane to access the A513 instead.
3.36 The section of the Eastern Bypass between the A34 and A513 is largely dependent on the inclusion of the Southern Bypass. Without the Southern Bypass to compliment it this section is used by approximately 200 PCUs in each direction bar a few exceptions.
3.37 When the Southern Bypass is included, this A34 to A513 section of Eastern Bypass is used by anything up to 845 PCUs as in Option 2 Test 3. This is a significant improvement in utilisation.
3.38 The small residential estate north of the railway line (zone 56) is currently modelled with a splay zone connector as the T-junction suggested in the diagrams appeared to prevent much of the traffic from this zone accessing the network. This should be considered if the Eastern Bypass is to be taken forward.

Southern Bypass

3.39 The Southern Bypass is used by a significant amount of traffic regardless of which land use or road schemes are included. Northbound actual flows range from 637 to 1138, and Southbound from 640 to 1174.
3.40 In general, the flows on the Southern Bypass increase when the Eastern Bypass is also included. This is less prominent in Option 3 - the only option not to have the new development on the bypass. This suggests that the inclusion of the development traffic prevents potential bypass users from travelling on the bypass.
3.41 The junction connecting the Southern Bypass to Acton Gate requires attention as this is often causing the approaches to be over capacity. This does not solely affect the Southern Bypass approach but also the other approaches to the junction.
3.42 Finally, the new housing development SF8 (zone 2119), requires access to the bypass. However, a simple T-junction was found to be insufficient to allow the traffic onto the network and therefore
this development is currently modelled with a splay zone connector. If this development is to go ahead then suitable access arrangements will have to be considered.
3.47 The results of including the Western Bypass also suggest that the Martin Drive and Kingsway roundabouts that are to be used for the Western Bypass may require improvement to handle the demand for this route.

4. Additional Tests

4.1 Following a meeting on the $15^{\text {th }}$ May 2009 regarding the results of Chapter 3 (the Further Initial Options Assessment) and associated appendices the number of Options under consideration was reduced to three future year options in addition to the Base Year and Do Minimum for benchmarking.
4.2 At the meeting Atkins presented the finding of the 15 Options Comparison, discussed the merits of the various options, and the number of options were reduced. The chosen options for additional testing are Option 2 Test 2, Option 3 Test 2 and Option 3 Test 3.
4.3 A brief summary of these options is provided in Table 4.1.

Table 4.1 - Options for Additional Testing

Option	Option 2 Test 2	Option 3 Test 2	Option 3 Test 3
Housing Growth	10,000	10,000	10,000
Growth Location	North, West, South	North, West, East	North, West, East
Road Schemes	West, East	West, East	West, East and South

4.4 This section of the report provides further data and analysis on these remaining options and, through also drawing on the data of the previous chapter, aims to give sufficient information for the options to be reduced further to a solitary, preferred option.
4.5 Delay plots for the three remaining options are provided in Appendix E. These show junctions where the delay is forecast to be greater than 30 seconds and uses a colour theme to demonstrate the severity of delay. Base Year and Do Minimum network are also provided to enable comparison with the current situation and future year without the additional growth scenario.
4.6 Bandwidth actual flow plots are also provided in Appendix E. These show the quantity of flow that each road is forecast to endure by the future year traffic demand. The widths of the lines are proportional to the size of the flow. A table of key radial route flow figures is also provided.
4.7 Finally, key journey times are provided in Appendix D. Further to this, graphs showing how these journey times differ across the 3 options along with the Base Year and Do Minimum are provided. This helps demonstrate exactly where an option excels or performs poorly in relation to other options.
4.8 Option 2 Test 2 and Option 3 Test 2 are directly comparable as they have the same road schemes incorporated and thus will cost the same amount to implement. However, Option 3 Test 3 has an additional road scheme, making it significantly more expensive to implement. Therefore, when considering the results, Option 3 Test 3 would have to perform radically better than the other options to warrant selection.

Delay and Flow Analysis

4.9 This section draws conclusion from the tables and diagrams provided in Appendix E.
4.10 For the analysis of junction delays and radial route flows the Do Minimum, and to some extent the Base Year, will act as a baseline by which to compare the high growth options.
4.11 It is important to understand the starting point to interpret which problems are caused by growth or road schemes, which exacerbated by them and which are reduced by them.

Base Year

4.12 The delays in the Base Year are few, with a noticeably larger problem in the PM peak than in the AM peak.
4.13 The Base Year AM peak currently has no delays of greater than 90 seconds and only 8 greater than 30 seconds. The PM peak is worse, but still only has 10 junctions with greater than 30 seconds delay.

Do Minimum

4.14 The Do Minimum shows a significant increase in delay and flow problems from the Base Year. We would expect this given the forecast growth from 2007 to 2026 in addition to the 2,500 additional housing growth incorporated within the Do Minimum.
4.15 The number of junctions with delay over 30 seconds increases by over 330% in both peak periods. While many of these lie in the lowest band of 30-60 second delay, there are still a high number of more serious delays.
4.16 The emerging problem areas in the Do Minimum are:

- The town centre, particularly in the PM peak;
- A34/A513 Beaconside Junction;
- The A34 Lichfield Road near Riverway; and
- The A449 south of the town centre, though this is less problematic than the aforementioned.
4.17 The flows on radial routes generally increase in the Do Minimum. The most notable increases are on Gaol Road ($40 \%+$) and tidally on Doxey Road (up to 80%).
4.18 The flow diagram also illustrates that Queensway in the town centre is subject to much higher flows than in the Base Year.

High Growth Options

Delays

4.19 The high growth options all have similar numbers of junctions over the 30 second delay threshold. However, the severity and location of delay differs between the options. Table 4.2 shows the spread of delay severity by option over both peak periods.

Table 4.2 - High Delay junction Spread by Option

	No. Junctions (AM+PM) Option 2 Test 2		
Option 3 Test 2	Option 3 Test 3		
30-60s	51	49	53
$60-90 \mathrm{~s}$	19	18	17
$90-120 \mathrm{~s}$	2	6	8
Over 120s	5	6	4
Total	$\mathbf{7 7}$	$\mathbf{7 9}$	$\mathbf{8 2}$

4.20 The table demonstrates that, while the overall number of junctions with greater than 30 second delays are similar in all options, the spread differs.
4.21 Option 2 Test 2 has the least number of junctions with high delay, and further, has the favourable distribution with most of these being the lower delays.
4.22 Option 3 Test 3 and Option 3 Test 2 both have 12 severe - above 90 second - delays whereas Option 2 Test 2 has just 7.
4.23 Option 3 Test 3, even with all three road schemes, performs the worst on junction delay. Much of this can be explained by examining the diagram of these delays.
4.24 There are a high number of exacerbated existing delay problems on Beaconside in this option. This is likely to be due to the provision of the Eastern and Southern Bypasses in Option 3 Test 3. The combination creates an 'outer ring road' along A513 Beaconside, down the Eastern Bypass and Across the Southern Bypass. This alternate route for north-south movements around Stafford appears to have pushed the problem junctions on Beaconside into more severe delays.

Flows

4.25 For examining flow change, Appendix E provides both a table of radial route flows for the key movements and diagrams of flows on roads for the wider outlook.
4.26 In the high growth options, flows in both directions along Gaol Road and Doxey Road have increased by in excess of 50% compared to the Base Year.
4.27 The increase on Gaol Road is likely to be due to the new housing development in the North, and is perhaps also due to vehicles choosing Gaol Road to access the Western Distributor road.
4.28 Doxey Road has especially high growth with most flows increasing by over 100%. This is largely due to the Western Distributor road in all options and probably indicates good use of the Western Distributor road rather than a mounting problem.
4.29 If the radial route flow was taken before the Western Distributor road the flow growth would be much less.
4.30 The flows on Foregate Street are also affected by the Western Distributor road. They show a more tidal pattern than the other flows. Northbound shows large increases in the AM peak and Southbound show similar in the PM peak. The data indicates that the high growth options, with little deviation between options, increases AM Northbound flows by approximately 500 PCUs to a 1500 PCUs/Hr total. It also increases PM Southbound flows by approximately 800 PCUs to a $2100 \mathrm{PCUs} / \mathrm{Hr}$ total.
4.31 Flows along Lichfield Road do not differ much between the Do Minimum and High Growth Options. This could indicate that the Eastern Bypass, incorporated within all three high growth options, prevents the additional housing growth from adversely affecting this route.
4.32 Option 2 Test 2 performs noticeably better along Western Road than the other high growth options. This is likely to be due to Option 2 not including housing growth in the east. Option 3 Test 3 proves slightly better than Option 3 Test 2 on this route showing that the additional road scheme provides flow benefits.
4.33 Looking outside the radial routes at the flow maps, the high growth options produce significantly higher flows on Queensway in the town centre. These higher flows are increased further than those seen in the Do Minimum.

Delay and Flow Summary

4.34 The delay analysis has highlighted that, regardless of the high growth option chosen, there will be significantly more delay on the network than in the Base Year. However, in choosing an option carefully, this delay can be minimised and the amount of remedial work required can be reduced.
4.35 Option 2 Test 2 demonstrated less junctions with greater than 30 second delay. It also has a greater percentage of its 77 delayed junctions nearer 30 seconds than 120 seconds which is much preferable.
4.36 Option 3 Test 3 performs least favourably on this measure but this is largely due to exacerbating emerging problems on the A513 Beaconside.
4.37 The flow analysis highlighted key routes of growth. There is particularly high growth on Gaol Road and Doxey Road and tidal growth on Foregate Street.
4.38 The total flow across all routes for each option (Table 4.3) demonstrates that Option 2 Test 2 has the smallest impact on radial route flow of the high growth options. It also shows how Option 3 Test 2 performs worst on radial route flows.

Table 4.3 - Total Flow on Radial Routes

| Base Year | | | Do Minimum | Option 2 Test 2 | Option 3 Test 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | Option 3 Test 3

4.39 Table 4.4 shows the ranking for the delay and flow analysis based on benefits only.

Table 4.4 - Benefit Ranking for Delay and Flows Analysis

Do Minimum				Option 2 Test 2

Journey Times

4.40 Due to the huge quantity of journey time data provided (44 graphs covering 11 routes) the analysis of the outputs will focus on areas of significant difference between the options and therefore may ignore certain time period or routes altogether.
4.41 Those not mentioned should be assumed to be of minor importance and are likely to show the expected pattern of Base Year providing the shortest journey time, Do Minimum higher, and the three high growth options indistinguishable from each other with the highest journey times. This is the expected outcome due to the quantity of housing growth assumed in each option (see Table 4.1).
4.42 Figure 4.1 outlines the journey time route used for this analysis.

Figure 4.1 - Journey Time Routes for Analysis

Route 1

4.43 Route 1 is similar for all high growth options with Option 2 Test 2 performing the marginal stronger of the three.
4.44 In the westbound direction, the majority of delay is caused exiting the Queensway Gyratory that seems to be producing heavy problems (amounting to minutes in the PM peak).
$4.45 \quad$ The eastbound graph shows general divergence between the high growth options and the Base Year. This suggests that the growth is simply resulting in heavy traffic along this route providing delay along large portions. Junctions around the Western Downs housing estate are causing particular problems in addition to the town centre itself.

Route 2

4.46 Route 2 is interesting as this movement is served by an alternate route - the Eastern Bypass - in the high growth options. This is reflected in the results particularly in the PM peak where the Do Minimum is outperformed by the high growth options.
4.47 This suggests that the additional road provides the additional capacity required to prevent this route from failing as traffic grows over the next 20 years. South-eastbound in the PM peak, the results show that the introduction of the Eastern Bypass could save around 5 minutes in journey time.
4.48 Of the high growth options, Option 2 Test 2 proves the best across both time periods and directions. This is aided by being the only high growth option to outperform the Do Minimum in the AM peak, north-westbound.

Route 3

4.49 Route 3 along Beaconside shows the expected order with the three high growth options performing the least favourably. It is interesting to see that the majority of time difference between the high growth options and the Do Minimum is due to the approach to the A34/A513 roundabout (which is providing severe delay in all options - see delay $X X X X$) in both directions. Outside of this approach the journey times are similar to the Do Minimum and Base Year.
4.50 This suggests that if remedial measures were implemented at the A34/A513 junction the undesirable impact of the high housing growth could be muted. Option 3 Test 3 performs the worst across Route 3 with the other high growth options closely matched.
4.51 Finally, the other notable problem in the Eastbound is the approach to the A513/A518 roundabout. This is particularly severe in the PM peak and affects all of the high growth options. This suggests that this would be another good remedial measure if a high growth option is chosen.

Route 4

4.52 There is little to note about Route 4, the M6, other than to remark on how Option 3 Test 3, with its significantly higher growth, performs better that the Do Minimum in both directions and peak periods. This again suggests that the combination of Eastern and Southern bypasses provide a real alternative to the M6 for north-south (or vice versa) travel within Stafford.
4.53 The options are otherwise difficult to tell apart for the M6 journey times.

Route 5

4.54 There is little to remark about the differences between the options here except to note that Option 3 Test 2 performs the least favourable across both time periods and directions. The other high growth options are difficult to separate.

Route 6

4.55 In Route 6, circling the town centre, the performance of the high growth options is often better than the Do Minimum in the PM peak. This is likely to be due to the Western Bypass removing much of the traffic in the high growth options.
4.56 The high growth options provide similar journey times with Option 2 Test 2 performing best in 3 of the 4 time period/direction alternatives. Furthermore, Option 2 Test 2 is the only high growth option to have a shorter journey time than the Do Minimum in the clockwise direction, PM peak.

Route 7

4.57 This route does not separate the options as much as highlight the developing problems at the A34/A513 roundabout as the housing growth increases. The journey times for all five options follow much the same gradient (i.e. the same journey time) except for on the approach to this junction. The delay experienced at this junction is largely responsible for the high growth options overall taking approximately 3 minutes longer when approaching from Stone Road, and approximately 5 minutes longer when approaching along the A34 from the Motorway.

Route 8

4.58 Westbound, Route 8 along the A34 to the east of the town centre, shows that the main difference between the Base Year and the Future Years is caused by the approach to the Lichfield Road/Riverway junction (AM peak) and the Queensway Gyratory (PM peak). Outside of these junctions the journey times are indistinguishable. This corresponds to the delay plots (see XXXX) that helps to further understand that significant delay is being experienced at these junctions.
4.59 In the eastbound direction, the main reason for the journey times being higher than the Base Year is due to navigating the left turn from Queensway to A34 Lichfield Road. Outside of this movement, the journey times across all options are almost identical in both peaks.
4.60 Of the high growth options, Option 3 Test 2 performs least favourably. The other high growth options perform similarly and the difference to the Do Minimum is small. This suggests that the problems seen in this route are not exacerbated much by the additional 7,500 houses in the high growth scenarios. This is likely to be due to the Eastern Bypass preventing the escalating problems on this route.
4.61 Reiterating the point, remedial measures to the Queensway Gyratory and the Lichfield Road/Riverway junction could prevent journey times from growing much beyond those seen in the Base Year.

Route 9

4.62 Route 9, along the A449 from the M6 to the town centre shows some significant differences between the options.
4.63 Of the high growth options, Option 3 Test 2 is a distinct high performer on this route. This is likely due to the fact that it contains neither southern housing growth nor the southern bypass. Therefore, demand for this route may be less than in the other options.
4.64 In three of the four time period/direction graphs, Option 2 Test 2 suffers on the section between Burton Manor Road and Rickerscote Road. This could be an indication of Option 2 housing growth in the south straining this road into the town centre.
4.65 Northbound, particularly in the PM peak, the approach to the A449/Moss Pit roundabout is a major reason for the difference in journey times between the options. Option 3 Test 3 is especially poor here. This is likely to be due to vehicles looking to access the Southern Bypass in this option causing the roundabout to delay all traffic. Ignoring this junction, the journey times are all similar for the remainder of the route.
4.66 The journey time tests on Route 9 highlight that remedial measures will be essential on this route to prevent much longer journey times (potentially minutes longer) in the future.

Route 10

4.67 Route 10 shows no significant trends.

Route 11

4.68 In Route 11 westbound, along the A518 Weston Road, the Do Minimum performs worse than some of the high growth options. Option 2 Test 2 performs particularly well perhaps due to the fact that it does not have housing growth in the east.
4.69 Considering both directions, the main delays are due to the Queensway section of the route whereas the A518 performs well in all of the high growth options. This indicates that the Eastern Bypass is effective at providing extra capacity and preventing traffic growth affecting this radial route into the town centre.
4.70 Option 3 Test 2 performs weakest of the high growth options on this route. It is the only option to perform worse than the Do Minimum in the eastbound, PM peak results. This suggests that the combination of Eastern Bypass and Eastern Development results in the extra capacity being used up by the generated traffic.

Journey Times Summary

4.71 In general, the journey time analysis has shown that the provision of new road schemes can help to mitigate the impact of the additional growth in Stafford. There are, however, problems in a number of key areas, notably at the junctions highlighted during the analysis. These were:

- Queensway Gyratory;
- A34/A513 Roundabout;
- A513/A518 Roundabout;
- Lichfield Road/Riverway Junction; and
- The Burton Manor Road to Rickerscote section of the A449.
4.72 It is thought that, attending to key problem junctions in addition to the planned road schemes could help to address the impacts of additional housing growth. However, making the right choice on growth location and road schemes will also help to ensure necessary remedial measures are reduced.
4.73 Option 3 Test 2 performed poorly on many of the routes and would rank least favourable of the high growth options based on journey times.
4.74 Option 3 Test 3 and Option 2 Test 2 traded best performances on different routes and time periods making it appropriate to consider them equal in terms of benefits.

Table 4.5 shows the ranking of the options based on the benefits for journey times.
Table 4.5 - Ranking on Journey Time Analysis

Do Minimum	Option 2 Test 2	Option 3 Test 2	Option 3 Test 3
$\mathbf{1}$	2.5	4	2.5

Previous KPI Findings

4.76 It is important not to ignore the findings in the KPIs of Chapter 3 when comparing the remaining options.
4.77 In order to reduce confusion, the scoring of the previous KPIs have been rebased to a one-to-four scale in line with the options remaining. To this, the scoring for journey times, delays and flows have been added to provide an overall close up inspection of the four options. Table 4.6 shows the rebased scores and totals.

Table 4.6 - Rebased Initial KPIs Ranked on Benefits

KPI Type	KPI	$\begin{gathered} \text { Do } \\ \text { Minimum } \end{gathered}$	$\begin{gathered} \text { Option } 2 \\ \text { Test } 2 \end{gathered}$	$\begin{aligned} & \text { Option } 3 \\ & \text { Test } 2 \end{aligned}$	$\begin{gathered} \text { Option } 3 \\ \text { Test } 3 \end{gathered}$
Development Impacts	M6 Flows	3	4	2	1
Development Impacts	Vehicle Hours	1	3	4	2
	Vehicle Kilometres	1	4	2	3
	Vehicle Speeds	1	3	4	2
	Average Trip Length	4	1.5	1.5	3
	Development Demand	4	2	2	2
All User Impacts	Vehicle Hours	1	3	4	2
	Vehicle Kilometres	1	2	3	4
	Vehicle Speeds	1	3	4	2
	Average Trip Length	4	2	2	2
	Demand	4	1	2	3
Network Impacts	Junctions	1	4		2
	Links	3	1	4	2
Environment	CO2	1	2	3	4
	NOX	1	4	3	2
Access to Public Transport	Bus	1	2	3.5	3.5
	Rail	2.5	2.5	2.5	2.5
Access for Non Motrised Modes	Access to the Cycle Network	2.5	2.5	2.5	2.5
	Within 15 Minutes cycle of town centre	1	4	2.5	2.5
Additional Tests	Delay Analysis	1	2	3	4
	Flow Analysis	1	2	4	3
	Journey Time Analysis	1	2.5	4	2.5
Total	Sum	41	57	65.5	56.5
	Benefits Rank	1	3	4	2

4.78 While the overall ranking order hasn't changed the table does help to reduce confusion and provides a base on which to choose between the options.
4.79 Primary focus should be cast on the high growth options as these are the most likely to be taken forward.
4.80 Option 3 Test 2 proves to be a poor performer in relation to the other two and is comprehensively outscored. The table confirm what the detailed journey time, delay and flow analysis had indicated; Option 3 Test 2 is not a combination of land use and road schemes that work well in conjunction.

Of particular interest are the results of Option 2 Test 2 and Option 3 Test 3 which are split by the narrowest margin. On paper Option 3 Test 3 is the best of the high growth options based on benefits only. However, given the comparatively high cost associated with implementing this option (with three road schemes) it does not appear to prevail by significant enough margin to warrant the extra cost.
4.82 Therefore, it is likely that Option 2 Test 2 is the best compromise between cost and benefits in a high growth option.

5. Summary

5.1 This technical note has followed on from the analysis of two previous reports, the 'Initial Options Assessment Report' (December 2008) and the 'Addendum to the Initial Options Assessment Report' (February 2009).
5.2 This technical note first focused on the results of a further ten future-year option tests analysed in Chapter 3. These findings are name the 'Further Initial Options Assessment' and are summarised below under this heading.
5.3 This technical note then focused on the three future year options identified in the Further Initial Options Assessment providing additional analysis and information on these. This section of the report, found in Chapter 4, is named 'Additional Tests' and is summarised below under this heading.

Further Initial Option Assessment Summary (Chapter 3)

5.4 This section of the report expanded on the 'Initial Option assessment' of 5 options to a 15 option assessment called the 'Further Initial Option Assessment'.
5.5 The main addition to the previous reports is the inclusion of road schemes to compliment the development growth schemes tested previously. The KPIs that the options were assessed against are identical to those used in the previous reports.
5.6 This assessment has highlighted how new road schemes can help mitigate the new development growth in Stafford in addition to the general growth in road traffic from 2007 to 2026.
5.7 This mitigation was largely successful and for some indicators provided future year results that show improvements on the 2007 network conditions.

Inclusion of New Road Schemes

5.8 The key findings on the new road schemes were:

- The inclusion of road schemes had a positive impact on the networks. In particular Test 2 road schemes (Western and Eastern roads) produce the best results across all KPIs;
- Test 3 road schemes (Western, Eastern and Southern) also performed very strongly and the inclusion of Southern and Eastern road schemes together brings out the full benefits of the A34 to A513 section of the Eastern Bypass;
- The Eastern and Southern bypasses together also provide a good alternate route for northsouth movements in Stafford. However, it is worth noting that much of these benefits can also be gained though the inclusion of the Eastern bypass without the Southern bypass;
- The Southern Bypass has a detrimental impact on the Acton Gate junction on the A449 that it connects to. This adverse affect is seen on all approaches, not just the Southern Bypass approach;
- The Eastern Bypass would be heavily utilised beyond the capacity of the road proposed in the scheme plans (greater than 1800 PCUs/Hr) between Weeping Cross and Beaconside. However, much of this traffic uses Baswich Lane to access the bypass rather than using the SouthEast section between the A34 and A513;
- The Western Bypass is well utilised with high flows in all options tested. The Volume/Capacity information suggest that improvements to the Doxey Road/Western Bypass junction and the Western Bypass/Foregate Street junctions could achieve further benefits from this road scheme; and
- Test 1 performs poorly across all land uses. The combination of Western Distributor and Southern Bypass appears disjointed as the benefits of the Southern Bypass are lost without the Eastern Bypass.

Land Use Impacts:

5.9 The key findings on the land use configurations were:

- The 10,000 housing high growth options improve considerably when combined with the new road schemes. Option 2 and 3 score almost identically across all road tests with Option 3 marginally ahead;
- Option 3 Test 3 (All three road schemes) shows the biggest improvement of an Option due to road schemes as the total score improves by over 50% from 229 to 96 when the road schemes are included;
- In land use Options 2 and 4 the inclusion of the development SF8 has a detrimental impact on the benefits of the Southern Bypass. This is due to the fact that the development is accessed from the bypass and this additional traffic acts as a deterrent for potential bypass users; and
- The 7,000 housing medium growth land use improves well with the addition of the Western Distributor road. The inclusion of the distributor road provides a 26% improvement on the overall score.
5.10 Overall, the results suggest that Option 3 Test 3 (housing in the North, West and East and all three road schemes) is the preferred growth option in terms of transport benefits. However, the inclusion of all three road schemes and their associated cost may be a deterrent.
5.11 In this case, Option 2 Test 2 (housing North, West and South and road schemes in the West and East) appears to be a good compromise. It scores very similar to the best option but only requires two road schemes.
- Furthermore, all of the Test 2 options are competitive and so a balance between cost and the results of the KPIs is required to make further decision.
5.12 Finally, the results suggest that if the 10,000 house growth option is to be chosen instead of the 7,000 growth option (Option 1 Western), additional road schemes will be required to maintain the level of service seen in Option 1 Western. The 10,000 house growth option should be combined with either road test 2 or test 3 which could lead to improved network conditions still.

Additional Tests Summary (Chapter 4)

5.13 As a result of the Further Initial Options Assessment results, the 15 options were reduced to 5 that Atkins were asked to provide additional analysis on.
5.14 This section of the report provided additional information on the Base Year, Do Minimum, Option 2 Test 2, Option 3 Test 2 and Option 3 Test 3. The Base Year and Do Minimum were primarily for benchmarking as the aim of the additional tests is to determine a sole preferred option from the three high growth options.
5.15 Three extra analyses were conducted. These were Junction Delay analysis, Radial Route Flow analysis and Journey Time analysis. The results of these analyses were interpreted, along with the findings of the Further Initial Options Assessment to provide a holistic view of the remaining options.
5.16 The Junction Delay analysis demonstrated that all of the high growth options would subject the road network to increased delays. However, it was found that there would be fewer delays in Option 2 Test 2 . Option 3 Test 2 came a close second on number of delays but the severity of delays were greater making Option 2 Test 2 a distinct preferred option on this analysis.
5.17 The Radial Route Flow analysis showed that Gaol Road and Doxey Road are forecast to have substantially higher flows in the future regardless of option implemented. Foregate Street is also likely to show high flows in a more tidal way.
5.18 Option 2 Test 2 once again proved to have the lowest flows on radial routes though the results were close between all options. Option 3 Test 3 was second best on this measure.
5.19 Journey Time analysis demonstrated that Option 3 Test 2 was a clear poor performer.
5.20 However, Option 2 Test 2 and Option 3 Test 3 could not be separated on Journey times. Each of these outperformed the other on various routes. In terms of journey time benefits these two are thought to be almost identical.
5.21 When all the previous KPI findings were examined in addition to the new findings the following score totals were observed between the high growth options (note that lower scores are preffered):

	Option 2 Test 2	Option 3 Test 2	Option 3 Test 3
Score	57	65.5	56.5
No. Road Schemes	2	2	3

5.22 The difference in final score between Option 2 Test 2 and Option 3 Test 3 is minimal. It should be remembered that this score is only based on the benefits with no accounting for the cost.
5.23 When the cost of implementing the road schemes is considered, it is clear that Option 2 Test 2 is a strong favourite due to requiring only two new road schemes in comparison to Option 3 Test 3 requiring three road schemes.
5.24 Chapter 4 initially describes that Option 3 Test 3 would need to be substantially better than the other options to warrant selection. While it is better based on the KPIs considered, it is only better by the narrowest of margins.
5.25 Therefore, taking the cost and benefits balance, Option 2 Test 2 would probably represent the best value option.

Appendix A
 Detailed Assessment of Options

SNIXIV

Objective:

Sub Objectives:	Various Traffic Indicators
Methodology	
This ofjective has considered the following:	
Veniciel Hours	Total velicle hours for tips witini the modelarea
Venicicl Kilometres	Total veicicle kiometeres for tips within the model area
Venicle Speeds	The Average speed fort tips withit the model area
Average Trip Length	The Average tip length for trips witin the model
Development Demand	The total tip demand

Results

[^2]
SNIXIV

DRAFT Initial Option Assessment Report Objective:

Sub Objectives:

Results

Overall Score

DRAFT Initial Option Assessment Report
Objective: Impacts on Development Users
Objective:

Methodology	
This objective has conside	folowing:
Venicle Hours	Total venicle hours fort rips to and fom the new developments
Vehicle Kilometres	Total venicie kiliometres tort tips toand from the new developments
Venicle Speeds	The Average speed fort tips to and fom the new developments
Average Trip Length	The Average trip length withi the model area fort tips to and from the new developments
Development Demand	The toal tip demand to and fom the new developments

	$\underset{\text { Am }}{\substack{\text { dominimum } \\ \text { PM }}}$		$\mathrm{AM}^{\text {Option } \mathrm{P}_{\text {PM }}}$	$\mathrm{AM}^{\text {Option }{ }^{\text {Pm }} \text {, }}$	${ }_{\text {AM }}{ }^{\text {Option }}{ }_{\text {PM }}$		${ }_{\text {Opmion }}^{\text {OTest1 }}$			$\underset{\text { Oplion }}{\substack{\text { O } \\ \text { Test } \\ \text { Pm }}}$				$\underset{\substack{\text { Opion } \\ \text { Am } \\ 4 \text { Test } \\ \text { PM }}}{\text { PM }}$	$\underset{\substack{\text { Opion } \\ \text { Am } \\ 4 \text { Test } \\ \text { PM }}}{\text { PM }}$
Vehicle Hours \% Change Rel to DM	$\begin{gathered} 663 \quad{ }_{0}^{937} \\ 0.0 \% \end{gathered}$	$\begin{array}{cc} 1788 \\ \hline & 2094 \\ 1700 \% \\ 146.53 \% \end{array}$	$\begin{array}{ll} 2392 & 2730 \\ 261 \% \\ \\ \text { 2259.9\% } \end{array}$				$\begin{array}{cc} 2255 \\ 240 \% \\ 2059 \\ 208.27 \% \end{array}$							$\begin{array}{cc} 2164 \\ 226 \% \\ & 2482 \\ & 295.5 \% \% \end{array}$	$\begin{array}{cc} 2172 & 2494 \\ 2277 \% & 246 \% \\ & 196.7 \% \end{array}$
$\begin{aligned} & \text { Vehicle Kilometres } \\ & \text { \% Change Rel to DM } \end{aligned}$	$\begin{array}{cc} 29782 & 40665 \\ 0.0 \% \\ & \\ \hline 0 \end{array}$	$\begin{array}{cc} 72159 & 85094 \\ 142 \% & 109 \% \\ 125.8 \% \end{array}$	$\left.\begin{array}{\|cc\|} \hline 92958 & 100650 \\ 2122 \% \\ 186.56 \% \end{array} \right\rvert\,$		$\begin{array}{\|cc\|} \hline 93623 & 10699 \\ 21446 \\ \\ 188.46 \% \end{array}$		$\left\|\begin{array}{\|cc\|} \hline 92644 & 106031 \\ 2119 \\ \text { 21055.96\% } \end{array}\right\|$	$\begin{array}{ll} 89059 & 10286 \\ 1999 \% \\ 1096.056 \% \end{array}$		$\left.\begin{array}{\|cc\|} \hline 1468 & 102886 \\ 207 \% \\ \hline 181.85 \% \end{array} \right\rvert\,$	$\begin{array}{ll} 88740 & 102822 \\ 189 \% \\ 175.459 \% \end{array}$	$\left.\begin{array}{\|cc\|} \hline 88652 & 103080 \\ 1998 \% \\ 175.65 \% \\ \hline 158 \% \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 9388 \\ 21550597 & 10597 \\ \\ 188.76 \% \end{array}$	$\left.\begin{array}{\|cc\|} \hline 92968 & 103326 \\ 200 \% \\ 176.95 \% \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 9069 & 109955 \\ 2044 \% \\ 181.25 \% \\ 18.8 \end{array}$
Vehicle Speeds (km/hr) \% Change Rel to DM	44.9 ${ }_{\text {43,4 }}$		$\begin{array}{cc}38.9 \\ -13 \% & 38.8 \\ -12.11 \% \\ -120 \%\end{array}$	$\begin{array}{cc} 35.4 \\ -14 \% \\ -17.6 .4 \% \end{array}$	$\begin{array}{cc} 36.8 \\ -18 \% \\ -15.6 \% \\ \hline \end{array}$		$\begin{gathered} 41.1 \\ -8 \% \\ \\ .7 .1 \%{ }^{4.09 \%} \end{gathered}$	$\begin{array}{ll} 43.2 & \begin{array}{c} 41.3 \\ \\ \hline 4 \% \\ \\ \hline 4.3 \% \end{array}{ }^{5.5 \%} \end{array}$	$\begin{array}{ll} 43.6 \\ & \begin{array}{c} 4.23 \\ -3 \% \\ \\ \\ \hline 2.7 \% \end{array} \end{array}$	$\begin{array}{\|cc\|} \hline 39.6 \\ -12 \% .9 .9 \\ -9.9 \% \end{array}$	${ }_{-7.7 \%}^{4.7 \%}{ }_{-6.5 \%}^{4.5 \%}$	$\begin{array}{ll} 4.7 \\ { }_{5 \%}^{4.7} & 4.2 .2 \\ .3 .3 \% \end{array}$			${ }_{-7.7}^{41.7}{ }_{-5.0 \%}{ }^{42.1}$
Average Trip Length (km) \% Change Rel to DM	$\stackrel{10.7}{{ }_{0}^{10.8}}$	$\begin{array}{ll} 10.3 & 10.5 \\ -4 \% \\ .4 .2 .2 \% \end{array}$	$\begin{aligned} & 10.2 \\ & -5 \% \% \\ & -4.0 \%{ }^{10.4 \%} \\ & \hline \end{aligned}$				$\begin{gathered} 10.2 \\ -5 \% \\ 4.0 \%{ }^{10.3 \%} \end{gathered}$	$\begin{gathered} 9.8 \\ -8 \% \\ -7.8 \%{ }_{-7 \%}^{10.0} \end{gathered}$	$\begin{gathered} 9.9 \\ -7 \% \\ -7.4 \%{ }^{10.5 \%} \end{gathered}$	$\begin{aligned} & 10.1 \\ & -6 . \% \\ & -5.4 \%{ }_{5}^{10.2} \end{aligned}$	$\begin{gathered} 9.8 \\ -8 \% \\ -7.8 \% \end{gathered}{ }_{\substack{10.0 \\ \hline-7 \%}}$		$\begin{aligned} & 10.3 \\ & -4.4 \% \\ & -.3 .6 \% \\ & \hline .3 \% \end{aligned}$	$\begin{gathered} 9.8 \\ -8 \% \\ \\ -7.3 \% \\ \substack{10.1 \\ \hline .6 \%} \end{gathered}$	$\begin{aligned} & 10.0 \\ & -7 \%{ }_{-5.4 \%}^{10.3 \%} \\ & \hline \end{aligned}$
Development Demand \% Change Rel to DM	$\begin{array}{cc} 2783 & 3777 \\ -0 \% \end{array}$	$\left.\begin{array}{cc} 7022 & 8103 \\ 152 \% \\ 133.45 \% \\ 115 \% \end{array} \right\rvert\,$	$\begin{array}{ll} \text { 9276 } & 10239 \\ 2264 \% \\ \\ 1098.67 \% \end{array}$			$\begin{array}{cc} 7022 & 8103 \\ 152 \% & 115 \% \\ 133.4 \% \end{array}$	$\begin{array}{ll} 9076 \\ \begin{array}{c} \text { 202\% } \\ 20799 \\ 198.67 \% \end{array} \end{array}$		$\begin{gathered} 9076 \\ \begin{array}{c} 926 \% \\ 20239 \\ 198.67 \% \end{array} \\ \hline 1079 \end{gathered}$	$\begin{array}{ll} 9076 \\ \hline 226 \% \\ \hline 208.677 \% \\ \hline 1099 \end{array}$					

Objective	Sub Objective	Options														
			m								人	人				
Development Impacts	Vehicle Hours	1	3	12	15	14	2	10	6	5	11	7	4	13	8	9
	Vehicle Kilometres	1	3	12	15	13	2	11	6	8	10	4	5	14	7	9
	Vehicle Speeds	1	10	12	15	14	3	9	5	2	11	7	4	13	8	6
	Average Trip Length	15	14	9.5	12	12	8	9.5	1.5	5	6.5	1.5	3.5	12	3.5	6.5
	Development Demand	15	13.5	6.5	6.5	6.5	13.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5

SNIXIV

DRAFT Initial Option Assessment Report
DRAFT Initial Option Assessment Report
Objective: Net

Network Impacts

Impacts on Junctions and Links

Methodology	
This objective has considered the following:	
Junctions	An assessment has been undertaken of the number of junctions with an average V / C of $>85 \%$
Links	An assessment has been undertaken of the number of links with an average VIC of $>85 \%$
Note:	
These indicators have been assessed using the SATURN model for the key simulated area	
A V/C Ratio of 85% is considered to represent links and junctions which are approaching capacity and hence beyond this significant delays and queuing may occur.	

Methodology
Results
Overall Score

SNIXIIV

$\begin{aligned} & \frac{g}{g_{0}^{2}} \\ & \frac{\bar{z}}{\bar{b}} \end{aligned}$	

DRAFT Initial Option Assessment Report Objective:
Access to Public Transport
Access to existing services
\qquad Results

	$\underset{\text { Am }}{\text { Do Minimum }}$	$\underset{\text { AM }}{ } \quad \text { Option 1a }{ }_{\text {PM }}$	$\stackrel{\text { AM }}{\text { Option }}{ }_{\text {PM }}^{2}$	$\stackrel{\text { Option } 3}{\text { AM }}$	$\mathrm{AM}^{\text {Option }}{ }^{\text {4 }}$ PM	$\begin{aligned} & \text { Option } 1 \text { Western } \\ & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \text { Option } 2 \text { Test } 1 \\ & \text { AM } \end{aligned}$	$\begin{aligned} & \text { Option } 2 \text { Test }{ }^{\text {AM }} \\ & \text { PM } \end{aligned}$	$\underset{\text { AM }}{\substack{\text { Option } 2 \text { Test } 3}}$	$\begin{aligned} & \text { Option } 3 \text { Test } 11 \\ & \text { AM } \end{aligned}$	$\begin{aligned} & \text { Option } 3 \text { Test }{ }^{2} \\ & \text { AM } \end{aligned}$	$\underset{\text { AM }}{\substack{\text { Option } 3 \text { Test } \\ \text { PM }}}$	$\begin{aligned} & \text { Option } 4 \text { Test } 1 \\ & \text { AM } \\ & \text { PM } \end{aligned}$	${ }_{\text {AM }}^{\text {Option }} 4$ Test ${ }^{\text {P/ }}$	$\underset{\text { AM }}{\substack{\text { Option } \\ 4 \\ \text { Test } \\ \text { PM }}}$
No of development without Bus access	2	8	8	9	9	8	8	8	8	9	9	9	9	9	9
Total Developments	51	61	65	67	${ }^{67}$	61	65	65	65	67	67	${ }^{67}$	67	${ }^{67}$	${ }^{67}$
$\underset{\substack{\text { Access }}}{\text { \% Development without Bus }}$	4\%	13.1\%	12.3\%	13.4\%	13.4\%	13.1\%	12.3\%	12.3\%	12.3\%	13.4\%	13.4\%	13.4\%	13.4\%	13.4\%	13.4\%

[^3]
SNIXIV

DRAFT Initial Option Assessment Report

[^4]| | $\stackrel{\circ}{\circ}$ |
| :---: | :---: |
| | $\stackrel{\circ}{\circ}$ |
| | \% |
| | § |
| | \% |
| | ¢ |
| | $\stackrel{\circ}{\circ}$ |
| | $\stackrel{\circ}{\circ}$ |
| | \% |
| | £ |
| | \% \% |
| | |

Appendix B

Network Impacts

Appendix C

Eastern and Western Bypass Actual Flows

Appendix D

Delay and Flow Analysis

Flows on Key Radial Routes

 on the following pages to help identify the location at which the flows were taken.| | Name | Base Year | | Do Minimum | | Option 2 Test 2 | | Option 3 Test 2 | | Option 3 Test 3 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | | AM Flow | PM Flow |
| 1 | Gaol Road SB | 506 | 548 | 715 | 927 | 775 | 1026 | 777 | 1019 | 774 | 1008 |
| | Gaol Road NB | 497 | 678 | 681 | 959 | 737 | 1173 | 787 | 1182 | 786 | 1185 |
| 2 | Western Road EB | 765 | 1060 | 913 | 1238 | 950 | 1296 | 1077 | 1280 | 1078 | 1262 |
| | Western Road WB | 959 | 873 | 1242 | 817 | 1353 | 1021 | 1414 | 1187 | 1363 | 1103 |
| 3 | Litchfield Road EB | 672 | 909 | 860 | 1088 | 855 | 1089 | 874 | 1087 | 854 | 1106 |
| | Litchfield Road WB | 839 | 618 | 853 | 797 | 890 | 801 | 916 | 797 | 921 | 794 |
| 4 | Wolverhampton Road SB | 420 | 1118 | 642 | 1327 | 746 | 1356 | 715 | 1376 | 659 | 1325 |
| | Wolverhampton Road NB | 919 | 655 | 1126 | 785 | 1117 | 703 | 1111 | 589 | 1114 | 613 |
| 5 | Newport Road EB | 1024 | 640 | 1276 | 875 | 1425 | 898 | 1404 | 904 | 1410 | 896 |
| | Newport Road WB | 516 | 1037 | 476 | 1128 | 565 | 1279 | 566 | 1281 | 571 | 1277 |
| 6 | Doxey Road EB | 784 | 414 | 1146 | 416 | 1466 | 1037 | 1489 | 1044 | 1479 | 1029 |
| | Doxey Road WB | 309 | 626 | 362 | 1126 | 628 | 1780 | 636 | 1755 | 647 | 1746 |
| 7 | Foregate Street SB | 1633 | 1045 | 1926 | 1502 | 2079 | 1862 | 2120 | 1852 | 2126 | 1877 |
| | Foregate Street NB | 1008 | 1565 | 1200 | 1774 | 1527 | 1861 | 1496 | 1898 | 1482 | 1927 |

Do Minimum AM

Do Minimum PM

Option 3 Test 3 PM

Appendix E

Journey Time Analysis
11 Route Journey Time Figures

		$\begin{aligned} & 0 \\ & 7 \\ & 7 \end{aligned}$	$\mid \underset{N}{\prime}$	公	$\text { N in } \underset{\sim}{\circ} \underset{\sim}{\underset{\sim}{\sim}} \stackrel{0}{N} \underset{N}{N} \underset{N}{N}$	$\underset{\sim}{N}$	$\mid \sim \stackrel{\infty}{\circ} \stackrel{O}{\sim} \stackrel{e}{N} \underset{N}{N}$	$\underset{\sim}{N}$		9
		$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & n \\ & n \end{aligned}\right.$		20		$\underset{\sim}{N}$	$\text { م } \stackrel{m}{\sim} \underset{\infty}{\underset{\sim}{N}} \underset{\sim}{N}$	$\underset{~ P}{2}$		$\frac{N}{\top}$
$\mathrm{E} \frac{\mathrm{~N}}{\mathrm{o}} \mathrm{O}$		$\underset{\sim}{\sim}$		\mathfrak{N}		$\underset{\sim}{\sim}$	م	$\underset{\sim}{~ N}$		\bigcirc
$\begin{array}{r} \Sigma \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	N	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & i \end{aligned}\right.$		1	$\mid \underset{\sim}{N} \underset{\sim}{\infty} \underset{\sim}{N} \text { 앋 }$	Non	م	$\underset{\sim}{N}$		－8
\% 잉	$\circ \underset{\sim}{\circ} \times \infty \stackrel{N}{\Gamma} \stackrel{N}{N}$	$\underset{\sim}{\mathcal{M}}$		N্লি	N	암	$\text { م } \stackrel{\text { ® }}{\sim}$	$\underset{\sim}{n}$	 	¢
		\cdots		O	\mathfrak{N}	$\underset{\sim}{\underset{\sim}{\sim}}$		$\underset{N}{\mathrm{~N}} \underset{\substack{\mathrm{~N} \\ \mathrm{~N}}}{ }$		N
	No	$\bar{\infty}$	$\underset{\sim}{N}$	Non		边	م	$\underset{\sim}{N}$		N
	No			$\frac{m}{\sigma}$	M e e o	\bar{F}		$\underset{\sim}{~}$	 	－8
$\frac{\Sigma}{\square}$	$\mid \underset{\sim}{\star} \underset{\sim}{N} \text { N N }$	$\begin{aligned} & \hat{M} \\ & \hline \end{aligned}$	¢ ${ }_{\sim}^{\text {O }}$ N	N్ల		$\underset{\substack{\mathrm{N} \\ \hline \\ \hline}}{ }$		$\underset{\sim}{\mathrm{N}}$		$\stackrel{9}{\sim}$
$\begin{array}{r} \overline{9} 9 \\ \hline 0 \\ \hline 0 \end{array}$		N్ల్ల			$\underset{N}{N} \stackrel{c}{N} \stackrel{N}{N}$	$\stackrel{\text { 앙 }}{ }$		$\begin{aligned} & 9 \\ & \hline \\ & \hline \end{aligned}$		$\stackrel{0}{\text { ¢ }}$
				$\text { Route } 3 \text { Beaconside E to W }$						3
	Nのナレம		んナ		•		ーNのナ		•	

		ㅇ へ	
oio			ホ
			ホ N
	¢		
			－フ チ 寸 ¢
힐			
ob			
	－Nのナமமへのの		

	\mathfrak{N}					®o io M
No		が				
	꾹 에국 딩ㅇ웅	～～			$\underset{\sim}{N} \hat{N}$	
			－i			¢
				$\stackrel{N}{\approx} \stackrel{\sim}{\Gamma} \stackrel{\rightharpoonup}{N}$	ু	
	N N N్ల్ల io in in		Nơ웅			$\because \sim$ ©
$\stackrel{N}{N}$	$\underset{\sim}{\sim} \sim_{N}^{\infty} \underset{\sim}{\underset{\sim}{F}}$	－			둔	
					フ ƠN	
$\begin{array}{r} \Sigma \frac{1}{\circ} \frac{0}{\circ} \\ \stackrel{\circ}{\circ} \end{array}$		N ${ }_{\sim}^{\circ} \stackrel{L}{\sim}$		B－¢	®－	N
	－NN M ल ल					
				「～のナ	「～の＊ 0 －	「～のナにமへ

		읏NNNNNㅇㅇㅇㅇㅇ へ			0	No		N－
		స			$\begin{aligned} & n \\ & \\ & \\ & 8 \end{aligned}$	$\mid \stackrel{\circ}{N} \text { 융 }$		
		へ			\hat{y}	$\mid \underset{\sim}{\circ} \underset{N}{\text { O}} \underset{\sim}{N}$		
$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ}}$	$\underset{\sim}{\sim}$				$\stackrel{\alpha}{\circ}$			
	\mathfrak{N}				\％			
		代		に 				
	N			N읏욷	－	$\stackrel{\sim}{\sim}$		
$\begin{gathered} \Sigma \frac{0}{0} \\ \hline \frac{0}{\circ} \\ \frac{0}{2} \end{gathered}$		Nへべ			N			¢
		 				¢ ¢ ¢		
	－			－Nのナnロへ ¢ の		－N ¢＊		－Nのナ

Route 2 South-Eastbound

Route 2 North-Westbound

Route 4 Northbound

Route 4 Southbound

Route 6 Clockwise

- + *

Route 7 Triangle Clockwise

Route 8 Westbound

Route 9 Southbound

Route 10 Northbound

Atkins Transport Planning
The Axis
10 Holliday Street
Birmingham
B1 1TF
Direct Line: 01214836144
Direct Fax: 01214835252

Craig.shipley@atkinsglobal.com
www.atkinsglobal.com

- ATKINS Ltd except where stated otherwise. The ATKINS logo, the "open A" device and the strapline "Plan Design Enable" are trademarks of ATKINS Ltd.

[^0]: Plan Design Enable

[^1]: The maps in this document are reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings.
 Staffordshire County Council: Licence No. 100019422.2008.

[^2]: Overall Score

[^3]: Overall Score

[^4]: Overall Score

 5023650/Further IOA AT V1.6.docx

